12+
Все науки. №3, 2023

Объем: 154 бумажных стр.

Формат: epub, fb2, pdfRead, mobi

Подробнее

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

ВАЖНОСТЬ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПРИ ИЗУЧЕНИИ ОБЩИХ ЗАКОНОМЕРНОСТЕЙ И ПРОСТЕЙШИЕ СЛУЧАИ ПРЕОБРАЗОВАНИЯ

Алиев Ибратжон Хатамович

Студент 2 курса факультета математики-информатики Ферганского государственного университета

Ферганский государственный университет, Фергана, Узбекистан

Аннотация. Изучение окружающего мира непосредственно сводит к необходимости ведения тех или иных прогнозов, которые сводятся уже к важности установления для них основных законов мироздания, которые можно наблюдать в ходе изучения тех или иных явлений. При этом часто использование физических законов, возможные для описания с использованием не только обычных уравнений, но и дифференциальных уравнений, первого и вторых порядков, в том числе и большого количества уравнений в частных производных, довольно часто используемых при этом исследовании и понимании.

Ключевые слова: дифференциальные уравнений в частных производных, обыкновенные дифференциальные уравнения, математическое моделирование, аналогия, закономерности.

Annotation. The study of the surrounding world directly reduces to the need to make certain forecasts, which are already reduced to the importance of establishing for them the basic laws of the universe, which can be observed during the study of certain phenomena. At the same time, there is often the use of physical laws that are possible to describe using not only ordinary equations, but also differential equations of the first and second orders, including a large number of partial differential equations, quite often used in this study and understanding.

Keywords: partial differential equations, ordinary differential equations, mathematical modeling, analogy, regularities.

Приходя к изучению законов мира в физической науке чаще всего выделялись те или иные законы, первоначальными среди которых являются именно механические закономерности, созданные Ньютоном и разработанные в математическом плане с его же стороны, наряду с другими учёными, среди коих ярко выделяется фигура Лейбница. Для примера настоящего утверждения можно привести дифференциальные формы основных уравнений движения (1), которые в свою очередь сводятся до определённых значений в формулах ускорения (2), силы (3), работы (4), мощности (5) и прочих.

Настоящие моменты понимания могут чаще всего рассматриваться именно в дифференциальных формах значения, по той причине, что они могут быть численно определены благодаря вводу некоторых преобразований, а именно благодаря преобразованию (6) и взятию определённого интеграла с установлением определённых границ (7).

Подобные направленности развиты не только в механическом плане, но и в других разделах физики, ярким тому примером может случить электростатика, электродинамика, магнитостатика, магнето-динамика и прочие. Для доказательства этого достаточно лишь упомянуть, что само понятие силы тока является производным по времени заряда, а напряжение — производное по заряду работы.

Настоящее утверждение можно привести для большого числа самых различных пониманий, но важен тот факт, что подобный подход в отличие от классического математического регулирования, становиться единственным при необходимости описания гравитационных характеристик пространства в масштабах всего пространства. Примером подобного рода явлений, где использование производных и соответственно дифференциальных уравнений становится известная квантовая физика.

Однако, в масштабе явлений, где классический математический аппарат уже не может выполнять свои функции, важными являются не сколько обычные классические производные, сводимые к обыкновенным дифференциальным уравнениям, если, конечно, не учитывать простейшие случае, ярким примером для коих можно привести преодоление потенциальной ямы частицы или описание её движения, либо другие подобные тривиальные случаи, интересными являются в большей мере лишь уравнения в частных производных.

Использованная литература

1. Потрягин Л. С. Обыкновенные дифференциальные уравнения. — М.: Наука, 1974.

2. Тихонов А. Н., Самарский А. А. Уравнения математической физики. — М.: Наука, 1972.

3. Тихонов А. Н., Васильева А. Б., Свешников А. Г. Дифференциальные уравнения. — 4-е изд. — Фзиматлит, 2005.

4. Умнов А. Е., Умнов Е. А. Основы теории дифференциальных уравнений. — Изд. 2-е. — 2007. — 240 с.

5. Чарльз Генри Эдвардс, Дэвид Э. Пенни. Дифференциальные уравнения и проблема собственных значений: моделирование и вычисление с помощью Mathematica, Maple и MATLAB = Differential Equations and Boundary Value Problems: Computing and Modeling. — 3-е изд. — М.: «Вильямс», 2007.

6. Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. — М.: Наука, 1969.

НЕКОТОРЫЕ ОПЕРАЦИИ И ЧАСТНЫЕ СЛУЧАИ МАТЕМАТИЧЕСКОГО АНАЛИЗА В ИНГЕНЦИАЛЬНОМ МНОЖЕСТВЕ

Алиев Ибратжон Хатамович

Студент 2 курса факультета математики-информатики Ферганского государственного университета

Ферганский государственный университет, Фергана, Узбекистан

Аннотация. Важность определения и преобразования ингенциальных чисел и настоящего множества с каждым днём становится всё более очевидном, особенно с входом данного понятия в математическую физику, но и как чисто математический объект они представляют не малый интерес, хотя при этом имеют и практическое применение. В настоящей работе, описаны методы проведения некоторых алгебраических операций с ними, в том числе с использованием формулы Эйлера и интеграллами.

Ключевые слова: ингенциальные числа, математический анализ, алгебраические операции, формула Эйлера, интегрирование, производные.

Annotation. The importance of defining and converting exponential numbers and a real set is becoming more and more obvious every day, especially with the entry of this concept into mathematical physics, but as a purely mathematical object they are of no small interest, although they also have practical applications. In this paper, methods of performing some algebraic operations with them are described, including using Euler’s formula and integrals.

Keywords: inertial numbers, mathematical analysis, algebraic operations, Euler formula, integration, derivatives.

Сам процесс логарифмирования ингенциального числа общего вида, можно видеть в (1).

Таким образом, при логарифмировании, образуются 2 части самого выражения — действительная, как натуральный логарифм от коэффициента ингенциальной части и логарифм от ингенциальной единицы, которая определяется в (2).

То есть имеется в этом случае возникает вопрос, в какую степень необходимо возвести число Эйлера, чтобы она выдало ингенциальную единицу. Ответ довольно прост — это отрицательный логарифм от нуля (2) из этого следует, что логарифм от ингенциального числа составляет (3).

Также интересно решение уравнения Эйлера с ингенциальной единицей, а после и с общим видом ингенциального числа, что и описывалось далее, приняв выражения как неизвестные. И для этого изначально можно исходить из разложений Тейлора (4—6).

Что легко доказывается, поскольку при обнулении неизвестной синус в (5) также обнуляется, а косинус в (6) равняется единице. И уже из этого вытекает (7).

И неизвестным в (7) могут быть все возможные числа, как комплексные, при подстановке которых вытекает замечательное равенство Эйлера, так и ингенциальные. И для начала, рассмотрим частный случай, с ингенциальной единицей и произведём следующие преобразования (8).

Исходя из этого соотношения выполняем преобразования в (9), приведя к уравнению (10), при этом учитывая, что это выражение является тождественным возможно дифференцировать обе части уравнения в (11), выполнив соответствующие преобразования.

Поскольку завершающее равенство (11) можно представить как в (12), далее проведя дополнительное дифференцирование, также вводя условие, что это тождество, а в (13) подробно расписан процесс дифференцирования для правой стороны равенства. А для левой же части нет необходимости в подробной росписи.

Когда дифференцирование произведено, достаточно произвести элементарные преобразования, получив тригонометрический вид частного случая (14).

Теперь же, когда получен общий вид для дважды дифференцированного случая, необходимо вернуться к первообразным, ибо это тождество, в результате чего получаются следующие равенства (15—16).

И действительно это значение близко к самому ингенциальному значению, таким образом это выражение может считаться вторым видом записи ингенциальной единицы. Теперь же, можно переходить и к решению уравнения Эйлера для общего вида ингенциальных чисел, проведя в начале первую подстановку и обычные операции замены на этапе (17) и (18).

Когда же нужные преобразования подходят к концу, а иные действия уже не имеют места, то достаточно также продифференцировать обе части равенства как действительное тождество (19).

Дифференцируя первую часть равенства, можно прийти к результату в (20), а для второй части, вычисления продолжатся на протяжении всего (21).

Затем же применив (22—25) можно прийти к виду (26).

В результате достаточно прировнять оба результата в (20) и (26), поскольку это две части тождества, после чего получить (27) с необходимым упрощением, а уже в (28) с дополнительным упрощением и дифференцированием как тождество.

Бесплатный фрагмент закончился.

Купите книгу, чтобы продолжить чтение.